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We show, both analytically and numerically, that erroneous data transmission generates a global transition
within a competitive population playing the “Minority Game” on a network. This transition, which resembles
a phase transition, is driven by a “temporal symmetry breaking” in the global outcome series. The phase
boundary, which is a function of the network connectivityp and the error probabilityq, is described quanti-
tatively by the crowd-anticrowd theory.
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The study of complex adaptive systems is enabling phys-
ics to expand its boundaries into a range of nontraditional
areas within the biological, informational, and socio-
economic communities. Since these areas are often rich in
empirical data, they also offer physics a new testing ground
for theories of complex systems, and for nonequilibrium sta-
tistical mechanics in general[1]. It is widely recognized[2]
that Arthur’s multiagent “El Farol bar problem”(EFBP) [3]
embodies the interacting, many-body nature of many real-
world complex systems. In particular, a binary representation
of the EFBP, namely, the “Minority Game”(MG) [4–8],
plays the role of a new “Ising Model” for theoretical physics.

Despite widespread interest among physicists in biologi-
cal, informational and socio-economic networks[9], re-
searchers have only just started considering the effect of such
networks in the MG and EFBP[7,8]. It has so far been as-
sumed that any information shared between agents is always
perfectly accurate. However, real-world complex systems do
not operate at such levels of perfection. Furthermore, infor-
mational networks might be used by agents to spy and mis-
lead rather than to benefit others. This raises the following
question: What is the effect of networks within a competitive
population such as the MG, where the information transmit-
ted is corrupted?

Here we show analytically and numerically that erroneous
data transmission generates an abrupt global transition within
a competitive, networked population playing the Minority
Game. This phaselike transition is driven by a “temporal
symmetry breaking” in the global outcome series. The
crowd-anticrowd theory, which accounts for the many-body
(i.e., many-agent) correlations inherent in the system, pro-
vides a quantitative yet physically intuitive explanation of
this phase transition.

Our model consists ofN objects or “agents” who repeat-
edly compete to be in a minority: for example, commuters
striving to choose the least crowded of two routes. The
agents can be any form of adaptive object, e.g., biological or
mechanical, and our general setup has potential application
to a wide range of problems in the biological, informational
and social sciences. The minority rule can also be general-
ized [5]. At each time stept, each agent decides between
action +1, meaning to choose option “1,” and action −1,
meaning to choose option “0.” The winning(i.e., minority)
outcome at each timestep is 0 or 1. Each agent decides his

actions in light of (i) global information which takes the
form of the history of them most recent global outcomes,
and (ii ) local informationobtained via the cluster to which
he is connected, if any. Such connections may be physically
tangible (e.g., a telephone or Internet link, or biological
structure) or physically intangible(e.g., a wireless communi-
cation channel, or biochemical pathway). Adaptation is intro-
duced by randomly assigningSstrategies to each agent. Each
of the 22m

possible strategies is a bitstring of length 2m de-
fining an action(+1 or −1) for each of the 2m possible global
outcome historiesmstd [4,5]. Form=2 for example, there are

22m=2
=16 possible strategies and 22=4 possible global out-

come histories:mstd=00, 01, 10 and 11. Strategies which
predicted the winning(losing) action at a given time step are
assigned(deducted) one point.

Agents use the connections they have, if any, to gather
information from other agents. For simplicity we assume a
random network between agents, fixed at the beginning of
the game. The connection between any two agents exists
with a probability p, hence each agent is on average con-
nected topsN−1d others. At a given time stept, and with a
given global historymstd, each agent takes the action pre-
dicted by the highest-scoring strategy among his ownand
those of the agents to whom he is connected. The parameter
q is the probability that anerror arises in the information he
gathers from his cluster. Alternatively,q can be viewed as the
weight an agent places on the information gathered from his
cluster. For example, if the actionof the best strategy in his
cluster is +1, the agent records this as a −1 with probability
q (and vice versa for a best action −1). The information
transmission has been corrupted with probabilityq. Any
agent with a higher-scoring strategy than those of his neigh-
bors at a given time step, is unaffected by this error—the
only source of stochasticity which might affect him is the
standard coin-toss used to break any ties between his own
strategies[5]. In contrast to the agents’ “on-site” stochastic
strategy selection arising in the “Thermal Minority Game”
(TMG) [6,10], the stochasticity associated withq in our
game depends on the agents’ connectivity.

We now investigate the effects of thismicroscopic
connection-driven data error on the system’smacroscopic
dynamics. We shall build an analytic theory based on the
crowd-anticrowd theory[5] which incorporates the many-
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agent(many-body) correlations arising in the system’s strat-
egy space as a result of the dynamics in the history space. To
a very good approximation, we can replace the full strategy
space by a reduced strategy space(RSS) [4] which provides
a minimal basis set of strategies for the system[5]. The
appropriate choice for the RSS depends on the relative fre-
quency of visits to the 2m histories. With all histories visited
equally often, the RSS comprises a total of 2P=232m strat-
egies[4]. We will examine how the interplay betweenp and
q affects the fluctuations in the excess demandDstd. As em-
phasized in previous MG works, small fluctuations inDstd
are signatures of an efficient self-organization within the
population[4–7]. The excess demandDstd at time stept is
given by

Dstd = n+1std − n−1std = o
K=1

K=2P

aKnKstd, s1d

wheren+1std fn−1stdg is the number of agents taking action
+1 s−1d; aK= ±1 is the action predicted by strategyK in
response to historymstd and nKstd is the number of agents
using strategyK at time t. K labels theKth highest scoring

strategy whileK̄=2P+1−K labels the anticorrelated strat-
egy. In the non-networked MG at lowm, Dstd exhibits large,
crowd-driven fluctuations whilemstd follows a quasideter-
ministic Eulerian trail in which all historieshmstdj are visited
equally [11]. Hence, the time averageskn−1stdl=kn+1stdl,
yielding kDstdl=0, which is the optimal value forDstd. We
continue this focus on smallm here, since we are interested
in the effect ofq on these crowd-driven fluctuations. We will
assume that the combined effect of averaging overt for a
givenC (whereC is a given realization of the initial strategy
allocation matrix[5]), and averaging overC, will have the
same effect as averaging over all histories. This is true for
the non-networked MG, and produces a meanDstd of zero.
Hence the fluctuation(i.e., standard deviation) of the excess
demand,sD, is given by

sD
2 =Ko

K=1

P

fnKstd − nK̄stdg2L
t,C

< o
K=1

P

snK
mean− n

K̄

meand2.

s2d

We have used the orthogonality properties of the vectors
with elementsaK whereK=1,2, . . . ,2P [5]. SincenKstd will
generally fluctuate around some mean valuenK

mean, we have
also writtennKstd=nK

mean+eKstd and assumed that the fluctua-
tion terms heKstdj are uncorrelated stochastic processes. In
Eq. (2),

nK
mean= nK + n→K

q − nK→
q − nK

q s3d

and similarly forn
K̄

mean
, where

(1) nK is the mean number of agents whose own best
strategy is actually theKth highest scoring strategy in the
game[5]

nK = NFS1 −
K − 1

2m+1 DS

− S1 −
K

2m+1DSG . s4d

(2) n→K
q is the mean number of agents who only possess

strategies worse(i.e., lower scoring) thanK, but who will use
strategyK due to connections they have to one or more
agents who each possess strategyK but no better

n→K
q = s1 − qdn→K + qn→K̄, s5d

where

n→K = Fo
J.K

nJGfs1 − pdoG,KnGgf1 − s1 − pdnKg s6d

with n→K̄ being obtained from Eq.(6) by setting K→ K̄
=2P+1−K.

(3) nK→
q is the mean number of agents who possess strat-

egyK, but who will nevertheless use a strategy better thanK
due to connections

nK→
q = s1 − qdnK→ + qnK̄→, s7d

where

nK→ = nKf1 − s1 − pdoG,KnGg s8d

and similarly fornK̄→.
(4) nK

q accounts for the situation in which an agent is
connected to other agents with the same highest scoring
strategyK as him.q therefore gives the probability that this
agent will take the opposite action to strategyK

nK
q = qnKf1 − s1 − pdnKg − qnK̄f1 − s1 − pdnK̄g . s9d

Figure 1 compares the numerical and analytical results for
sD, which is the standard deviation in excess demand. The
agreement is remarkable given the complexity ofsD as a
function of p and q. As the “noise” levelq increases, the
system undergoes a change in regime at a critical connectiv-
ity p defined by the critical boundaryCcritsq,pd. Moving
acrossCcritsq,pd, the symmetry in the global outcome string
is spontaneously broken in a manner reminiscent of a phase
transition. Specifically, the global outcome series changes
from the low-q phase where it resembles the period-4 Eule-
rian trail…00110011…, to a high-q phase where it comprises
two distinct branches[see Fig. 1(a)]. Figure 2 shows indi-
vidual runs near the critical noise threshold. The higher
branch corresponds to a period-2 global outcome se-
ries…1010… which is antiferromagneticif we denote 0(1)
as aspatial spin up (down) as opposed to atemporalout-
come. The lower branch corresponds to the period-1 series of
“frozen” outcomes…0000…or…1111…, i.e., ferromagnetic.
In this high-q phase, the system will choose one of these two
global outcome branches spontaneously, as a result of the
type and number of links each agent has. This symmetry
breaking of the global outcome series along the channel of
minimum fluctuation in Fig. 1,Ccritsq,pd, originates in the
internal coupling between the history dynamics, the strategy
space and the individual agent networks. Because of the ini-
tial strategy allocation and connections, many agents will
have a built-in bias towards one of the two possible actions
and hence act in a deterministic or “decided” way at a given
time step. However, there exist a few “undecided” agents
who need to toss an unbiased coin to decide between the
equally balanced signals they gather from their local net-
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work. It is the fluctuations of these few undecided agents
who then push the system onto a particular branch.

We now discuss two technical details. First, there are
many ties in strategy scores at very smallm, and hence many
tie-breaking coin tosses. This means that the fluctuation
termsheKstdj can no longer be ignored. Them=1 surface in
Fig. 1(b) was therefore produced by averaging over the 2
32m=4 time steps in the Eulerian trail[11]. In other words,

the double average in Eq.(2) was evaluated over the 2
32m=4 time steps in the Eulerian trail. When a tie break
between the strategiesK=1 andK=2 arises at one of the
four timesteps, one replacesnK=1

mean and nK=2
mean by 1

2snK=1
mean

+nK=2
meand at that timestep, as one does, for tie breaks between

any otherK andK8. In this way, the average over the Eule-
rian trail is easily evaluated analytically. Asm increases,
there are more time steps over which one must average(i.e.,
2P=232m time steps). However, since ties also become less
frequent asm increases, one can simply ignore them without
significant loss of accuracy(see Ref.[5] in which good
agreement is obtained for the non-networked MG for a wide
range of m values without considering ties). Second, the
theory has assumed the non-networked MG result that the
dynamics follow the Eulerian trail. Only one branch there-
fore emerges in Fig. 1(b) at high q, appearing like some
effective average over the global output series for all
branches in Fig. 1(a). If instead one uses knowledge of the
actual global output series for these separate branches(i.e.,
antiferromagnetic or ferromagnetic), then results even closer
to Fig. 1(a) can be obtained. This is illustratedat one particu-
lar p by the dotted line in Fig. 1(b).

Figure 3 provides a contour plot ofsD around the mini-
mum. The black contour, centered around the critical curve
Ccritsq,pd, effectively separates the two different regimes of
behavior. The lowsD values aroundCcritsq,pd can be easily
understood using the physical picture provided by the crowd-
anticrowd theory: the stochasticity induced byq (i.e., noise)
breaks up the size of the crowds using a given strategyK,

FIG. 1. Fluctuation in excess demand,sD, as a function of the
error probabilityq and the network connectivityp. (a) Numerical
results averaged over 300 runs, each with 105 iterations.(b) Ana-
lytic crowd-anticrowd theory. At highq, the two branches in(a)
correspond to different dynamical attractor states, while the single
branch in(b) represents an effective average(see text). The dotted
line in (b) at p=0.25 illustrates the modified analytical results for
the upper branch if one assumes some knowledge of this branch’s
global output series. Parameters:m=1, S=2, andN=101.

FIG. 2. Numerical results for individual runs, showing the fluc-
tuation in excess demand,sD, around q=0.5. Parameters as in
Fig. 1.

FIG. 3. Contour map version of Fig. 1. Contours correspond to
a constant value ofsD as a function of the error probabilityq and
the network connectivityp. (a) Numerical results.(b) Analytic
crowd-anticrowd theory. For clarity, only the upper branch of the
numerical results is shown for the highq phase.
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while simultaneously increasing the size of the anticrowds
using the opposite strategyK̄. It is remarkable that a linear
increase in the noiseq gives rise to such a non-linear varia-
tion in sD. Using the analytic expressions in this paper, an
equation forCcritsq,pd can be obtained. We do not include it,
however, because it is cumbersome. As noted above, the
theory neglects a full treatment of the dynamical fluctuations
around nK

mean. Hence, the theory overestimates the crowd-
anticrowd cancellation arising in Eq.(2) and thus slightly
underestimatessD in the neighborhood ofCcritsq,pd [com-
pare Figs. 3(a) and 3(b)]. As p increases,Ccritsq,pd becomes
less dependent on the connectivityp since more and more
agents join the same network cluster. Forp*0.05 the system
passes the percolation threshold and hence is dominated by a
giant, common cluster.

We have discussed the case of smallm, where the Eule-
rian trail acts as a quasiattractor atsq=0,p=0d. For largem,

the Eulerian trail no longer provides such an attractor. At
sq=0,p=0d, sD is smaller for largem than for smallm be-
cause the typical crowd(anticrowd) sizes decrease(increase)
asm increases. The regimesq=0,pÞ0d is discussed in Ref.
[8] for generalm, while the regimesqÞ0,pÞ0d will be
similar to the present results for sufficiently largep. A full
discussion for largerm will be presented elsewhere.

Finally, we note that our results raise the interesting pos-
sibility whereby imperfect information transmission could be
induced at the local level in order to achieve a desired
change in the macroscopic fluctuations within biological, in-
formational or socio-economic systems.
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